Sieve methods in group theory II: the mapping class group

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sieve Methods in Group Theory I: Powers in Linear Groups

The sieve method is a classic one in number theory (see, for example, [FI]). Recently it found some applications in a non-commutative setting. On the one hand, Bourgain-Gamburd-Sarnak [BGS1] applied it in studying almost-prime vectors in orbits of non-commutative groups acting on Z. On the other hand, Rivin [Ri] and Kowalski [Ko] used it to study generic properties of elements in the mapping cl...

متن کامل

Uniform convergence in the mapping class group

We characterize convex cocompact subgroups of the mapping class group of a surface in terms of uniform convergence actions on the zero locus of the limit set. We also construct subgroups that act as uniform convergence groups on their limit sets, but are not convex cocompact.

متن کامل

Accidental Parabolics in the Mapping Class Group

In this paper we discuss the behavior of the Gromov boundaries and limit sets for the surface subgroups of the mapping class group with accidental parabolics constructed by the author and A. Reid (2006). Specifically, we show that generically there are no Cannon–Thurston maps from the Gromov boundary to Thurston’s boundary of Teichmüller space.

متن کامل

Rigidity Phenomena in the Mapping Class Group

Throughout this article we will consider connected orientable surfaces of negative Euler characteristic and of finite topological type, meaning of finite genus and with finitely many boundary components and/or cusps. We will feel free to think about cusps as marked points, punctures or topological ends. Sometimes we will need to make explicit mention of the genus and number of punctures of a su...

متن کامل

On Class Group Computations Using the Number Field Sieve

The best practical algorithm for class group computations in imaginary quadratic number fields (such as group structure, class number, discrete logarithm computations) is a variant of the quadratic sieve factoring algorithm. Paradoxical as it sounds, the principles of the number field sieve, in a strict sense, could not be applied to number field computations, yet. In this article we give an in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geometriae Dedicata

سال: 2011

ISSN: 0046-5755,1572-9168

DOI: 10.1007/s10711-011-9662-4